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VIBRATION OF A SYSTEM OF MASSIVE STAMPS ON A 
LINEARLY DEFORMABLE FOUNDATION* 

E.V. GLUSHKOV 

A variational-difference method is applied to solve dynamic contact 
problems with contact domains of arbitrary planform, where the tedium 
in realizing this method is reduced substantially while the convergence 
is improved by the selection of delt-like functions of a special kind 
as coordinate functions. Results of numerical investigations are presented 
for the vibrations of a system of massive rectangular stamps on an elastic 
bed. The presence of resonance frequencies whose values depend on the size 
and mass of the stamps, and the presence of a shielding effect when a 
surface wave runs over the system of stamps are clarified. 

The vibrations of a massive foundation of rectangular planform were 
investigaged earlier /l/, as were the vibrations of a system of two massive 
rectangular foundations /2/. However, the approaches used possess worse 
convergence, compared with the variational-difference method,**(**Gol'dshtein 
R.V., Klein I.S. and Eskin G.I., A variational-difference method of solving 
certain integral and integro-differential equations of three-dimensional 
elasticity problems. Preprint No.33, Inst. Problems of Mechanics, USSR 
Academy of Sciences, Moscow, 1973) and require the evaluation of double 
integrals of strongly oscillating functions. As noted in /3/ in particular, 
this disadvantage is inherent in all methods based on the partition of 
the contact domain into cells with a uniform stress distribution therein. 

1. An elastic linearly deformable foundation is considered, the occupies the volume 
- w<x,y<oo, --co<-h <z< 0, on whose surface (z = 0) are N massive stamps with a 
flat base occupying the domain 51 = 51x L a*... U 9~. The boundaries of the domains S&. are 
piecewise-smooth with angular points. 

Certain given harmonic loads fli (r,?~)e-“", k = 1, . . .,N act on the stamps, and moreover, 
their vibrations can be caused by waves arriving from a load R (r,y)eviof applied directly 
to the surface of the medium, where o is the angular frequency of the steady vibrations, and 
t is the time. In the general case the stamps adhere to the medium, i.e. 

u (J, y, z) = UT: (Tc, y), (5, y)i-c n,., 2 = 0 (1.1) 

(u, uk are the complex amplitudes of the displacement of the medium and the stamps). Compliance 
with the energy radiation conditions assuring uniqueness of the solution of the problem is 
required at infinity /4/. 

The surface stresses q (X,3) emtdui = ; {k. Ty:. u:) and the Lame coefficients a, p of the 

medium are referred to the characteristic value of the shear modulus p,,, the density p to 
the characteristic density pO, and the linear dimensions to the characteristic linear dimension 

1 (to the thickness h of the layer in numerical examples). In this case the generalized 

frequency G =ol]/p&Lo is taken as the frequency, the forces are given in units of p#, 

and the masses in po13. All the expressions are later presented in dimensionless form; and 

the bar over the 3 is omitted. 
The dependence of the displacement u of the medium on the surface loads q characterizing 

its compliance, is derived by using the standard Fourier integral transform technique, and 

has the form /4/ 

k(l, y, z) = K(a, as, z)exp [--_((als+ a$)] dxIdaz 

I - i(alZM + azZN) - icila2 (M - N) - ia,P 

K (rl. u2, z)= - iaIz2 (M - A’) - i (a12N -+ c$lM) I - ia,P 

, 

alS aJ 

j 

R 

(1.2) 
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Here lYl, I”* are the contours of integration whose shape is dictated by the ultimate 

absorption principle /5/, M,N, P,R,S are functions of a == 6a1" + ups and z, determined 

from certain boundary value problems for systems of differential equations. In the case of 

homogeneous media, these functions can be written down explicitly, while numerical methods 
have been developed for their construction for stratified and multilayered media.* (*See /5/ 
and also Glushkov E.V. and Glushkova N.V., Energy computation of elastic waves excited by 

surface sources in a stratified space. Rostov-on-Don, 1981. Deposited in VINITI, December 24, 

1981, No.5827~81). 
If the stamps are non-deformable, then the displacements ux(r,y) of each of them will 

satisfy the equations of the motion of a rigid body 

(1.3) 

Here nzx is the mass, WI: is the displacement of the centre of mass of the k-th stamp, 
(XB. Yr, 21:) are the coordinates of its centre of mass, (~1; is the vector of the angles of stamp 
rotation around axes passing through its centre of mass and parallel to the &, Oy, 02 axes, 

J, is the vector of the moments of inertia with respect to these same axes, P, is the 
principal vector, M, is the principal moment of the forces acting on the k-th stamp, -q is 
the reaction of the medium to insertion of the stamp, and JI;.~, Mm, %.I+ zoi;,t fl = 1, 2, 3) are 
the components of the corresponding vectors. 

Each vector uh. is expressed in terms of six unknowns Wi;.l? (Pk.1 (1 = 1, 2, 3) 

The integral relation connecting the stamp displacements with the surface stresses has 
the following form by virtue of boundary conditions (1.1): 

f”H is the displacement of the surface caused by the loadg). By (1.4) 

q=ti$ll$%,iqti. 1 -!- 9)k.iqk.I*~)-- qH (1.5) 

The vectors 9k.m (m = 1, . . ., 6), qn satisfy the system of integral equations 

gq,,, = xkell KPk,lcs = xk (er x Rk), l = 1, 2, 3 (1.6) 

KqH = u, k = 1, 2, . . ., h’ 

i 

19 

XA(X* y)= 0, 

(I, y)” 611, 

(I, y)gsr, 

The 6N unkowns EL'~.~, q~ are determined from the system of linear algebraic equations obtained 
after substituting (1.5) into (1.3) 

(1.7) 

is a 6 X 6 matrix, and 
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A m. kj = SS qj. m dX dY* Bm. kj = SS (% x qj, m) dx dys 
m=l, 2, . . ., 6 

T= 8 

I 

(fA + qH) dx dy 

A ss (RR X (4 + 9,)) dx dy 
I 

(the integrals are taken over the domain Q,). 
The systems (1.6) are solved by a variational-difference method /6/. The general scheme 

Of the method is described in detail,*(*Babeshko V.A., Glushkov E.V., Glushkova N.V. and 
Einchenko Zh.F., Steady vibriations of massive objects on the surface of an elastic medium. 
Rostov-on-Don, 1981. Deposited in VINITI, January 22, 1982, No.290-82) its convergence is 
proved, the form of the coordinate functions is given, and it is shown how to reduce the tedium 
of its realization on a computer. The analysis of the contact stresses under a stamp of 
rectangular planform that makes friction-free contact with the medium, performed by the 
fictitious absorptionmethod, **(**Babeshko V.A. and Priakhina O.D., Method of fictitious absorp- 
tion in the spatial dynamical contact problems of the theory of elasticity, Rostov-on-Don, 
1981. Deposited in VINITI, April 10, 1981, No.1578-81) yielded agreement with the results 
obtained by the variational difference method. The singularity of the contact stresses in the 
neighbourhood of the angular points Qk is studied in /7/. 

2. Numerical investigations were performed for the following models. The medium is an 
elastic layer of unit thickness, adhering rigidly to the non-deformable foundation, and 
Poisson's ratio of the layer is v =0.3 Here, in (1.2) 

R (a, 0) = --x**y, (a* sh Y* ch YI - wz sh YI ch Y*YA 
M (a, 0) = --ix**y* (a* sh y1 ch y* - yly* sh y* ch yJA 
N (a, 0) = i sh y*/(a*y* ch y*) 
A(a) = 4a*y,y*(a* + y**) - y1y2 [4a* + (a* -t- ~**)*lch~~ch y?+ 

a2 [(a* + Y**)* + ~Y~*Y,*I sh y1 sh Y* 

ym = 1, a ‘v3 Re~m~O,Imp,<O,m= I,2 

Xi"- I , X??= pw2h’ p&h2 
A-q 

-=O?(po=p) 
p 

The stamps are considered to be planar (zk = 0, R, =I {T - Jk,y - ykrO))+ of rectangular 
planform, with dimensions 3 X 4 with respect to h. The case of friction-free contact is 
considered for given vertical loads (case A), and also the case of the origination of contact 
stresses in only a direction parallel to the 0.r axis (case B, film stamp). 

In case A we seek LL‘~,,~, T~:.~. q,,?, IS,, while wk,lr WP,Z. cFt,s. ~Zc,,~ ‘CkZ are identically zero; 
in case B mk,r. T,:,~, ?..TT are not zero. The integral operator in system (1.6) here becomes one- 
dimensional, corresponding to one element in the matrix K-K,2 in case A and K,, in case 
B. Moreover, the dimensions of system (1.7) in which rows corresponding to the tangential 
force compoents are neglected in case A and components not parallel to Or in case B are 

reduced. 
We take as incoming waves 

i.e., the asymptotic expansion of the surface waves arriving from the vibrations source at a 
distance of rO> I. Here &(r = 1, . . ., p), 5,’ (s = 1, . . . q) are real poles of the functions 

R, 111 and N, and ct.cg = censt (in the computations Cr = CQ = 1 and r0 = 40). 

Remark. Real loads referred to $2 are quantities of the order of 10+ - IO-'*. con- 

sequently, in going over to specific parameters the results presented below, which have been 
obtained for unit forces, will be reduced by many orders of magnitude. 

In Fig.1 we show the zeros (dashed lines) and poles (solid lines) of the function R..II..f- 
as a function of frequency. The frequencies for which the poles become non-eliminable and 
two-fold (the frequencies of the layer natural vibrations) are marked with asterisks here and 
henceforth (0 = 2.88, 2.92 in case A, and o = 1.57,2.88 in case B). 

In Fig.2 we show the dependence of the amplitude of the forces P occurring under the stamp 
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vibrating translationally with unit amplitude , on G, in case A (line 1) and B (line2 1: the 

amplitudes of the forces under a stamp at rest alongside a vibrating stamp are supported by 
dashes. It is seen that at the natural frequencies of the layer that correspond to double 
poles equal to zero, the amplitude of the forces vanishes. This result agrees with that 

obtained earlier for a strip stamp /8/ 
known theorem t/4/, p.239). 

and satisfies the demands of theory because of a well- 

Fig.2 Fig.3 

Fig.4 Fig.5 

The solid lines 1-3 in Fig.3 are the amplitudes of vertical displacements of the centre 
of mass wQ (case A) of a single stamp of unit mass of different sizes vibrating under the 
effect of unit load (the number of the line corresponds to the number of the stamp). The 
results of analyzing the vibrations of a system of two stamps of size 3 X 4, one of which is 
loaded (solid lines) while the other is load-free (dashed lines) are also shown. The dis- 
placements of the loaded stamp are practically in agreement with the displacements of a single 
stamp (line 1, case A); line 4 is the result for a system of film stamps (case B). 

Resonance frequencies whose location changes as the stamp size or mass changes can be seen. 
The existence of such discrete resonance frequencies of the stamp-layer system in the frequency 
range prior to the appearance of a continuous spectrum is shown in /9/. It is clear that only 
those frequencies at which the determinant of the system (1.7) vanishes can be resonant. 

The displacements of two unloaded stamps subjected to incoming surface waves are shown 
in Fig.4; the solid lines in cases A (line 1) and B (line 2) are for the left stamp, the 
dashes for the right stamp. It can be seen that the screening effect, the decrease in vibra- 
tion amplitude of the right stamp as compared with the vibrations of the left, is stronger 
at high frequencies, starting especially with the first natural frequency. For it to appear 
it is obviously necessary that the sizes of the overlapping domains be sufficiently large 
compared witb the wavelength. Thus, for stamps of one-fourth the size (0.75 X l), screening 
at these frequencies is practically unnoticeable. 

The author is grateful to V.A. Babeshko, 2h.F. Zinchenko, and N.V. Glushkova for discussing 
the research and for useful remarks. 
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AGEING VISCOELASTIC MATERIAL* 

A thin-plate bending equation in a polar coordinate system is derived for 
an inhomogeneously ageing material using creep theory. This equation is 
used to prove the sufficient condition forthe stability of annular plates 
by an energy method. The case of rigid clamping of both plate edges and 
compressive forces of dissimilar intensities along these edges is examined. 
Stresses in the plane of the plate are estimated, whereupon a bound is 
obtained on the compressible force in explicite form. An extension is made 
to other kinds of plate support. 

Equations for the deflection and sufficient conditions for the 
stability of inhomogeneously ageing viscoelastic rods were obtained 
earlier in the one-dimensional case /l/. 

1. Formulation of the problem. The strain of an annular plate of constant thick- 
ness h and radii R, and R (R,< R) fabricated from an inhomogeneously ageing viscoelastic 
material is considered. We introduce a cylindrical system of coordinates &ms with origin 
at the centre of the middle plane of the plate in the undeformed state and the 0s axis 
perpendicular to this plane. 

we assume the modulus of instantaneous elastic strain E and Poisson's ratio v oftheplate 
material to be constant and a load consisting of a transverse distributed load of intensity 

q (r, cF) and compressive forces of intensity p,, and p on the inner and outer edges of the 
plate, respectively, to be applied to the plate at the time t=o. We let p(r,q) denote 
the growth of an element of viscoelastic plate material in the neighbourhood of a point with 
the coordinates r,cp at the time of application of an external load, and L is an operator 
governing the ageing properties of the material, i.e., /l/ 

where L (t, z) is the creep kernel. The inverse operator to I + L is denoted by 1 -_N: I- 

N = (I + L)-‘, where the operator N has the same form as the operator L and governs the 
relaxation property of the material; the integrand N 0, 4 is called the relaxation kernel. 

Let the following properties of the creep and relaxation kernels be satisfied. 
lo. Functions L, (t, r), X, (t, z) exist such that for any (r, cp) E Ii?,, RI x [0,2 nl, t E IO, tl 

the inequalities 

are satisfied. 

30. A function N,(t, T) exists for all s>U such that starting at a certain time 

to = to W > 0 for all t>r>s to 

*Prikl.Matem.l~ekhan.,49,1,148-155,1985 


